Computational Investigation of Feature Extraction and Image Organization
نویسندگان
چکیده
This dissertation investigates computational issues of feature extraction and image organization at different levels. Boundary detection and segmentation are studied extensively for range, intensity, and texture images. We developed a range image segmentation system using a LEGION network based on a similarity measure consisting of estimated surface properties. We propose a nonlinear smoothing algorithm through local coupling structures, which exhibits distinctive temporal properties such as quick convergence. We propose spectral histograms, consisting of marginal distributions of a chosen bank of filters, as a generic feature vector based on that early steps of human visual processing can be modeled using local spatial/frequency representations. Spectral histograms are studied extensively in texture modeling, classification, and segmentation. Experiments in texture synthesis and classification demonstrate that spectral histograms provide a sufficient and unified feature in capturing perceptual appearance of textures. Spectral histograms improve significantly the classification performance for challenging texture images. We also propose a model for texture discrimination based on spectral histograms which matches existing psychophysical data. A new energy functional for image segmentation is proposed. With given regional features, an iterative and deterministic algorithm for segmentation is derived. Satisfactory results
منابع مشابه
Image authentication using LBP-based perceptual image hashing
Feature extraction is a main step in all perceptual image hashing schemes in which robust features will led to better results in perceptual robustness. Simplicity, discriminative power, computational efficiency and robustness to illumination changes are counted as distinguished properties of Local Binary Pattern features. In this paper, we investigate the use of local binary patterns for percep...
متن کاملContourlet-Based Edge Extraction for Image Registration
Image registration is a crucial step in most image processing tasks for which the final result is achieved from a combination of various resources. In general, the majority of registration methods consist of the following four steps: feature extraction, feature matching, transform modeling, and finally image resampling. As the accuracy of a registration process is highly dependent to the fe...
متن کاملDocument Analysis And Classification Based On Passing Window
In this paper we present Document analysis and classification system to segment and classify contents of Arabic document images. This system includes preprocessing, document segmentation, feature extraction and document classification. A document image is enhanced in the preprocessing by removing noise, binarization, and detecting and correcting image skew. In document segmentation, an algorith...
متن کاملSalient regions detection in satellite images using the combination of MSER local features detector and saliency models
Nowadays, due to quality development of satellite images, automatic target detection on these images has been attracted many researchers' attention. Remote-sensing images follow various geospatial targets; these targets are generally man-made and have a distinctive structure from their surrounding areas. Different methods have been developed for automatic target detection. In most of these met...
متن کاملFeature extraction of hyperspectral images using boundary semi-labeled samples and hybrid criterion
Feature extraction is a very important preprocessing step for classification of hyperspectral images. The linear discriminant analysis (LDA) method fails to work in small sample size situations. Moreover, LDA has poor efficiency for non-Gaussian data. LDA is optimized by a global criterion. Thus, it is not sufficiently flexible to cope with the multi-modal distributed data. We propose a new fea...
متن کامل